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are necessary and that LCO testing should continue to be performed
by engineers well versed in classical flutter flight test procedures.
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Thomas A. Zeiler*
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Nomenclature

a = distance, in semichords, between airfoil midchord and
elastic axis (see Fig. 1)

b = airfoil semichord

h = airfoil plunge displacement (see Fig. 1)

k = reducedfrequency, wb/V

m = airfoil mass (per unit span)

r, = radius of gyration, in semichords, of airfoil with respect
to the elastic axis

V= airspeed

x, = distance,in semichords, from airfoil elastic axis to center
of mass (see Fig. 1)

o = airfoil pitch displacement (see Fig. 1)

u = airfoil mass ratio, m/pmb®

p = airmass density

o, = uncoupledplunge radian frequency

o, = uncoupled pitchradian frequency

Introduction

URING the first half of the 20th century, Theodore Theodorsen

formulated the first analytically exact unsteady aerodynamic
theory for modeling the mechanism of aeroelastic flutter.! The case
considered was that of the two-dimensional airfoil section, with de-
grees of freedom in plunge, pitch, and trailing-edge control surface
rotation, in unsteady, incompressible flow. Theodorsen with I. E.
Garrick, authored several NACA reports>? containing plots of a
critical flutter speed parameter for ranges of a variety of airfoil and
flow parameters.

The airfoil flutter theory and results of Theodorsenand Garrick>>
are likely no longer used by anyone for designing safe, operational
vehicles, but they do serve useful purposes. The Theodorsen theory!
is still a useful educational tool in universities, being the simplest
flutter problem that students can prepare computer solutions for
with relative ease and at the same time learn the essential charac-
ter of solving flutter equations. In addition, the Theodorsen flutter
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solution, being for two-dimensional,incompressible, inviscid flow,
provides a limiting case for any newly developed computational
fluid dynamics schemes. Although the theory is flawless, the com-
putational resources available at the time (when computer was a job
title!) leave much to be desired when compared to the resources
available today. Some years ago, while doing his doctoral work, the
present author found* a number of erroneous plots in the reports
of Theodorsen and Garrick®?® and in other work that references
their results >¢ The amount of heartburn and time that the author
spent checking and rechecking could have been saved had it been
known that some (if not many, or all!) of the flutter boundaries
in the old NACA reports and texts were in error. The same could
be said of other research situations, and of the theory’s use in the
classroom.

It is evident that the errors in the original plots are not generally
known. Certainly none of the author’s dissertationcommittee knew,
and none of them were ignorant people. The purpose of this Note is
to ensure that the existence of the errors is generally known and to
provide a few corrected plots to the community at large. One does
not set about lightly to correct the masters, and only after numerous
rederivations is there confidence that the results presented herein
are correct.

Computational Results and Discussion

The standard V-g method of flutter analysis for the two-
degree-of-freedom (2-DOF) airfoil, Fig. 1, was implemented in
MATLAB®.” MATLAB’s zooming feature was used to isolate the
airspeed at the critical flutter point. Several plots of flutter bound-
aries from the literature are presented to illustrate the errors. In
Figures 3, 4, and 5, BAH refers to Ref. 5, BA refers to Ref. 6, and
T&G refers to Theodorsen and Garrick, either Ref. 2 or 3, specified
in the text as needed.

Figure 2 shows a set of flutter boundaries vs frequency ratio for a
set of values of x,. The curves in Fig. 2 were obtained from Ref. 6
(they also appearin Ref. 5). For these curves,a = —0.3, u =20, and
r, =0.5. For the lower values of the abscissa, there is agreement
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Fig. 1 Airfoil geometry, two-DOF.
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Fig. 2 First comparison of flutter boundaries from Refs. 2, 5, and 6
with present computations.
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Fig. 3 Second comparison of flutter boundaries from Refs. 2, 5, and 6
with present computations.

between the original curves and the present computations. Also,
though there are significant discrepanciesin the values of the flutter
parameter for higher values of frequency ratio, the general trends
observedin the present calculations are consistent with those of the
original plots.

Figure 3 shows a set of flutter boundaries vs the airfoil mass ratio
for a set of values of x,. These plots are interesting because they
appearin Refs. 2 and 5 for the mass ratio varying only from zero to a
value of 30. In Ref. 6, from where the curvesin Fig. 3 were obtained,
these plots appear with the mass ratio extending to 100. However,
some of the curves are mislabeled (with the corresponding value of
Xq) in Ref. 6. Furthermore, although the presentcomputationsagree
with the original plots for the lower values of u, there are again
serious discrepancies at higher values. Because the corresponding
curvesin Ref. 6 are mislabeled to begin with, only the present com-
putations (the symbols) are labeled in Fig. 3. In whatever fashion
the curves in Ref. 6 were supposed to be labeled originally is quite
irrelevant because they are incorrect anyway. These errors notwith-
standing, the present computations still display the same general
trends as the original curves, although the rise in flutter speed for
x, =0.2 as u increases is not quite as dramatic as the erroneous
curve suggests.

The final plot, Fig. 4, is taken directly from Ref. 4 and illus-
trates what is probably the most important reason that the present
article was written. Figure 6 shows four separate computations of
flutter boundaries for the three-DOF airfoil (that is, with trailing-
edge control). References 47 and 48 in Fig. 4 correspond to the
presentarticle’s Refs. 3 and 8. Also shown are flutter computations
thatincorporateda rational function approximationfor the unsteady
aerodynamics,as well as results using the V-g method (labeled U-
g). The hinge of the trailing-edge control (aileron) is at the 60%
chord. The radius of gyration in semichords of the aileron with
respect to the hinge, referenced to the total mass of the airfoil, is
0.002. The location of the aileron c.m. with respect to the hinge line
multiplied by the ratio of the aileron mass to the total airfoil mass
is 0.002. Also, (@,/ ®,) =0.607,a =—0.2, p =12, and r, =0.25.
Flutter boundaries are plotted vs the ratio of the uncoupled aileron
frequency and the uncoupled pitch (or torsion) frequency.

Clearly, the two methods from Ref. 4 and the computation done
in Ref. 8 agree with one anotherbetter than they do the original plots
fromRef. 3. What makes this plotimportantis that the computations
donein Ref. 8 were for a transonic flow theory that was being tested
for a low (incompressible) Mach number case, but the author of
Ref. 8 and his advisor (who was on this author’s committee) were ata
loss to explain the discrepancy. This experienceshows that testing of
any new theory or computer code for unsteady aeroelasticmodeling
and analysis that uses the incompressible two-dimensional airfoil
results of Theodorsen and Garrick®? for check cases shouldnotrely
upon the plots thatappearin Refs. 1-3, orin Refs. 5 and 6. Note that
the several flutter calculations (for zero structural damping) found
in Fung’s text’ agree with calculations done by the present author.
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Fig. 4 Comparison of three-DOF airfoil flutter boundaries repro-
duced from Ref. 4.

Summary, Conclusions, and Recommendations

Evidence is presented in this article that some of the flutter
boundaries (for the two- and three-DOF, two-dimensional airfoil
in incompressible, inviscid flow) found in the NACA reports by
Theodorsen and Garrick®? are in error, and that many others might
also be in error. Furthermore some of the erroneous plots have
found their way into some classic texts on aeroelasticity. It is sus-
pected that the state of computational capabilities that existed at
the time the original NACA reports were prepared contributed in
large measure to the errors. The exact errors made have not been
identified, however, and may never be. It is a comment on how
far computational capabilities have developed to note that today’s
undergraduate student, with a little tutoring, should be capable of
performing these computations with a speed and accuracy once
unimaginable.

The present author has notrecomputedall of the plots foundin the
NACA reports by Theodorsen and Garrick,* and does not suspect
that any new insights or old misconceptions will be revealed by
doingso. Nonetheless,itis recommendedthatall of the plots in these
classic and historicallyimportant NACA documents be recomputed
and published. Such an undertaking would serve two purposes: it
would provide numerically correctresults for others to use as check
cases, and it would bring a sense of closure to the groundbreaking
work done by Theodore Theodorsen and I. E. Garrick.
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Flow Complexities
of Slender Wing Rock

Lars E. Ericsson*
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Introduction

ILITARY design trends toward the use of unmanned, finless

aircraft' have renewed interest in the unsteady aerodynam-
ics of slender wing rock. One important aspect of the problem of
wing rock control is the potential impact of typical configurational
details on delta-wing aircraft, such as the presence of a centerbody.
Early experimental results for a sharp-edged 80-deg delta wing in-
dicated that breakdown of the leading-edge vortices played a role®?
(Fig. 1). It could be shown that rather than being the cause of the
wing rock problem, the breakdown phenomenon limited the growth
of the limit-cycle amplitude.* By the consideration of the effect of
the roll-inducedsideslip on the effective leading-edge sweep of the
windward (dipping) wing-half, an upper limit for the limit-cycle
amplitude could be determined.>® The measured start of wing rock
(Fig. 1a) is in good agreement with the prediction’ that, for zero
bearing friction, loss of roll damping should occur at a >20 deg
(Fig. 2). Bearing friction caused the delay to o =25 deg of the loss
of roll damping in the test of a pure delta-wing model® (Fig. 1a). It
will be shown that the earlier start of wing rock for the other model?
was caused by the presence of a centerbody or fuselage.

As even unmanned combat aircraftare likely to have a fuselage or
centerbody of some kind, it is important to know that the effectof a
centerbodyon delta-wing aerodynamicscan be large ® Experimental
results fora 69.33-degdelta-wing-body configurationdemonstrated
that the centerbody promoted vortex breakdown’ This could be
explained by the body-induced camber effect,*!* which according
to experimental results for the effect of static camber,!! would have
promoted breakdown, in agreement with the experimental results.
Figure 3 shows configurational details of the models giving the
results in Fig. 1. Whereas the Langley model’ behaves essentially
asapure, sharp-edgeddeltawing, the othermodel® has a centerbody.
Because of its bluntness,? it behavesas a cylindricalcenterbody,” !°
promoting vortex breakdown, thereby causing a reduction of the
maximum wing rock amplitude. The earlier loss of roll damping,
before the predicted value’ a~ 20 deg (Fig. 2), could also have been
caused by the presence of the centerbody. By limiting the wing area,
the centerbody acts to increase the effective leading-edge sweep,
thereby causing earlier loss of roll damping.

The experimental results'® in Fig. 4 show that when a pointed
ogive-cylinder centerbody, similar to the one used in Ref. 9, is
moved aft to start behind the wing apex, as in the case of the ex-
tensively tested 65-deg delta-wing-body configuration,'® instead of
promoting breakdown, the body delayed vortex breakdown to occur
30% or more aft of the measured position for a pure 65-deg delta-
wing.'* Itis described in Ref. 5 how this is the expected result when
the pointed ogive-cylinder body is moved aft, as shown in Fig. 4,
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Fig. 1 Wing rock of 80-deg delta wing.
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